organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

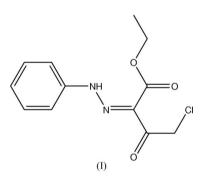
Gökhan Alpaslan,^a Özgür Özdamar,^b Mustafa Odabaşoğlu,^b Cem Cüneyt Ersanlı,^a* Orhan Büyükgüngör^a and Ahmet Erdönmez^a

^aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Kurupelit Samsun, Turkey, and ^bDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Kurupelit Samsun, Turkey

Correspondence e-mail: ccersan@omu.edu.tr

Key indicators

Single-crystal X-ray study T = 296 KMean $\sigma(\text{C}-\text{C}) = 0.003 \text{ Å}$ R factor = 0.035 wR factor = 0.092 Data-to-parameter ratio = 15.1


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Ethyl 4-chloro-3-oxo-2-(phenylhydrazono)butyrate

The title compound, $C_{12}H_{13}ClN_2O_3$, adopts a keto-hydrazo tautomeric form stabilized by an intramolecular N-H···O hydrogen bond. The configuration around the C—N bond is *trans*. The dihedral angle between the aromatic ring and the aliphatic chain is 5.52 (9)°. Symmetry-related molecules are linked *via* C-H···O hydrogen bonds to form chains along the *b* axis.

Received 27 June 2005 Accepted 4 July 2005 Online 9 July 2005

Comment

As part of our project to study the crystal structures of a series of phenylhydrazones and their stereochemistry, the crystal structure of the title compound, (I), has been determined. These compounds can exist either in the normal hydrazone form (Ph-NH-N=C<) or in the azo form (Ph-N=NH-CH<) and have been extensively investigated by various workers, using both chemical and a range of instrumental methods (Prasad & Sahay, 1993). 3-Phenylhydrazono-2,4diones and their derivatives are used for the treatment of cancer or AIDS, or of opportunistic infections afflicting patients with cancer or AIDS (Monga & Sausville, 2002).

Our investigations show that, in the solid state, the molecular structure of (I) adopts a keto-hydrazo tautomeric form with intramolecular hydrogen bonding (Fig. 1). This structure is also indicated by the N1-N2, C1-N1 and N2-C7 bond lengths (Table 1). The corresponding bond lengths in ethyl 4chloro-2-[(2-nitrophenyl)hydrazono]-3-oxobutyrate, which exists in the keto-hydrazo tautomeric form, are 1.316 (3), 1.396 (3) and 1.302 (3) Å, respectively (Odabąsoğlu et al., 2005a). An H atom is located on N1 rather than on O1, thus confirming a preference for the keto-hydrazo tautomer in the solid state. There is a moderately strong intramolecular N1-H1 \cdots O1 hydrogen bond, which is a common feature of similar systems {N-H···O = 2.06 (4) Å in ethyl 4-chloro-2-[(2nitrophenyl)hydrazono]-3-oxobutyrate (Odabaşoğlu et al., 2005*a*); N-H···O = 2.02 (2) Å in ethyl 4-chloro-2-[(4-nitrophenyl)hydrazono]-3-oxobutyrate (Odabaşoğlu et al., 2005b); $N-H \cdot \cdot \cdot O = 1.97 \text{ Å}$ in 4-chloro-2-(4-oxopent-2-en-2-yl-

© 2005 International Union of Crystallography

Printed in Great Britain - all rights reserved

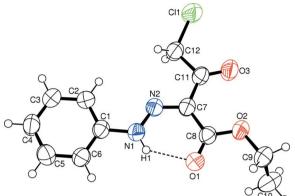
 $D_x = 1.384 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 7493 reflections $\theta = 1.9 - 27.1^{\circ}$ $\mu=0.30~\mathrm{mm}^{-1}$ T = 296 (2) K Plate, yellow $0.52 \times 0.42 \times 0.13 \text{ mm}$

1424 reflections with $I > 2\sigma(I)$

a mixture of

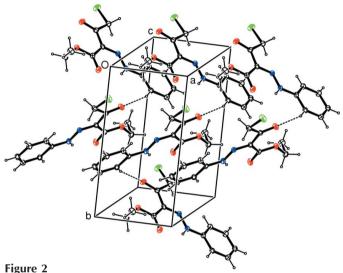
constrained

 $R_{\rm int} = 0.038$


 $\theta_{\rm max} = 26.0^{\circ}$

 $h = -6 \rightarrow 7$

 $k = -13 \rightarrow 13$


 $l = -24 \rightarrow 25$

 $\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

Figure 1

A view of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular hydrogen bond is shown as a dashed line.

A view of the packing of (I). Hydrogen bonds are drawn as dashed lines.

amino)phenol (Arici et al., 1999)}. The molecule adopts a Z configuration with respect to the N1-N2 bond. The N1-N2 single bond of 1.300 (2) Å is much shorter than that observed in 1,2-bis-[1-(3-pyridyl)-3-methyltriazen-3-yl]ethane (1.43 Å; Vaughan et al., 2004).

The dihedral angle between the planes of the aromatic C1-C6 ring and the C8/C7/C11/C12/O3 aliphatic chain is $5.52 (9)^{\circ}$. The dihedral angle between the H1/N1/N2/C7/C8/O1 ring formed through intramolecular hydrogen bonding and the O1/ C8/C7/C11/C12/O3/Cl1 plane is 3.19 (2)°.

In the crystal structure, molecules of (I) are linked through $C6-H6\cdots O3^{i}$ hydrogen bonds (symmetry code is given in Table 2), forming chains along the b axis (Fig. 2).

Experimental

Compound (I) was prepared as the 4-chloro-2-[(4-nitrophenyl)hydrazono]-3-oxobutyric acid ethyl ester (Odabąsoğlu et al., 2005a), using aniline and ethyl 4-chloroacetoacetate as starting materials (yield 87%; m.p. 362-364 K). The compound was recrystallized from glacial acetic acid.

C12H13CIN2O3
$M_r = 268.69$
Monoclinic, $P2_1/c$
a = 5.6856 (8) Å b = 10.9674 (10) Å
b = 10.9674 (10) Å
c = 20.704 (3) A
$\beta = 92.306 (12)^{\circ}$ V = 1290.0 (3) Å ³
V = 1290.0 (3) Å ³
Z = 4

Data collection

Stoe IPDS-II diffractometer (i) scans Absorption correction: integration (X-RED32; Stoe & Cie, 2002) $T_{\rm min}=0.860,\;T_{\rm max}=0.962$ 7849 measured reflections 2516 independent reflections

Refinement

Refinement on F^2	H atoms treated by a mixtur
$R[F^2 > 2\sigma(F^2)] = 0.035$	independent and constrain
$wR(F^2) = 0.092$	refinement
S = 0.82	$w = 1/[\sigma^2(F_o^2) + (0.0519P)^2]$
2516 reflections	where $P = (F_0^2 + 2F_c^2)/3$
167 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1 Selected geometric parameters (Å, °).

C1-N1	1.407 (2)	C9-O2	1.463 (2)
C7-N2	1.314 (2)	C11-O3	1.208 (2)
C8-O1	1.214 (2)	C12-Cl1	1.759 (2)
C8-O2	1.320 (2)	N1-N2	1.300 (2)
C6-C1-N1	118.7 (2)	O1-C8-C7	121.7 (2)
C2-C1-N1	121.4 (2)	O3-C11-C7	124.2 (2)
N2-C7-C11	112.7 (2)	C11-C12-Cl1	111.9 (1)
N2-C7-C8	122.6 (2)	N2-N1-C1	119.4 (2)
C11-C7-C8	124.6 (2)	N1-N2-C7	123.8 (2)
O1-C8-O2	123.4 (2)		

Table 2 Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C6-H6\cdots O3^i$	0.93	2.43	3.282 (3)	152
$N1{-}H1{\cdots}O1$	0.83 (2)	1.99 (2)	2.630 (2)	133 (2)

Symmetry code: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$.

The H atom bonded to N1 was refined freely. All other H atoms were refined using a riding model, with C-H = 0.93-0.97 Å and with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C}) [1.5U_{\rm eq}({\rm methyl \ C})].$

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant F279 of the University Research Fund).

References

Arıcı, C., Tahir, M. N., Ülkü, D. & Atakol, O. (1999). Acta Cryst. C55, 1691–1692.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Monga, M. & Sausville, E. A. (2002). Leukemia, 16, 520-526.

- Odabaşoğlu, M., Özdamar, Ö. & Büyükgüngör, O. (2005a). Acta Cryst. E61, o2065–o2067.
- Odabaşoğlu, M., Özdamar, Ö. & Büyükgüngör, O. (2005b). Acta Cryst. E61, o2068–2070.
- Prasad, N. & Sahay, A. (1993). Asian J. Chem. Rev. 4, 23-32.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.
- Vaughan, K., Turner, E. & Jenkins, H. (2004). Can. J. Chem. 82, 444-453.